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Directed rigidity and bootstrap percolation in 111 dimensions

Marcio Argollo de Menezes* and Cristian F. Moukarzel†

Instituto de Fı´sica, Universidade Federal Fluminense, CEP 24210-340, Niteroi, RJ, Brazil
~Received 6 May 1999!

We study directed rigidity percolation~equivalent to directed bootstrap percolation! on three different
lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at
p51, while the augmented triangular lattice shows a continuous transition at a nontrivialpc . On the aug-
mented triangular lattice we find, by extensive numerical simulation, that the the directed rigidity percolation
transition belongs to the same universality class as the directed percolation. The same conclusion is reached by
studying its surface critical behavior, i.e., the spreading of rigidity from finite clusters close to a nonrigid wall.
Near the discontinuous transition atp51 on the triangular lattice, we are able to calculate the finite-size
behavior of the density of rigid sites analytically. Our results are confirmed by numerical simulation.
@S1063-651X~99!19210-9#

PACS number~s!: 05.70.Jk, 05.70.Ln, 64.60.Ak
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I. INTRODUCTION

Central-force rigidity percolation~RP! @1–21# is the me-
chanical equivalent of the usual percolation problem@22–
26#. In RP forces~vectors! must be transmitted instead o
scalars. This problem has received increased attention
cently, following the development of mean-field theori
@12,16,18# as well as of powerful combinatorial algorithm
@27–30# for its numerical study@13–17,19–21#. As a result
of these efforts, a deeper understanding of the rigidity tr
sition has emerged, although some open questions rema

Bethe lattice calculations for RP@16,18# with an adjust-
able numberg of degrees of freedom at each site have be
used to obtain the behavior of the spanning cluster den
P`(p) as a function ofp, the dilution~bond or site! param-
eter. Forg51 one has usual~scalar! percolation, displaying
a continuous transition withbMF51. But for anyg.1, the
order parameterP` has a discontinuity at a finite critica
valuepc . Thus the rigidity transition is discontinuous ford
→` @18,19#. Other MF approximations also predict a firs
order RP transition@12#.

On triangular lattices, on the other hand, there is a div
gent correlation length and the RP transition issecond order
@13–17,20,21#, but in a different universality class than usu
percolation@20,21#. Some of the numerical evidence in tw
dimensions~2D! is consistent with a small discontinuity i
the order parameterP` , or a very small value forb, but the
precise interpretation of this evidence is still a matter of
bate@17#. In three dimensions, numerical simulations sh
@31# that the rigidity transition is second order, with a val
of b clearly larger than zero. This is somewhat surpris
since the rigidity transition is first order (b50) in the limit
of infinite dimensionality@16,18#. It is thus at present unclea
in which fashion the RP transition becomes discontinuou
the dimensionality increases. Is there something like an
per critical dimension for RP, beyond which it is first orde
Or does it get increasingly ‘‘first order’’~i.e., b→0) asd
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→`? This analysis is further complicated by the fact that
character of the transition islattice dependent. Hypercubic
lattices in which sites haved degrees of freedom each cann
be rigid if they are diluted, but are rigid if undiluted and
they have appropriate boundary conditions. Thus on hyp
cubic lattices the RP transition is ‘‘trivially first order’’ a
pc51, in any dimension.

Similar considerations apply to directed lattices. Bet
lattices are directed by construction, since there is only
path between any two given sites. On directed lattices, r
connectivity takes a particularly simple form. Imagine a rig
boundary to which a site withg degrees of freedom must b
rigidly attached by means of rotatable springs~central
forces!. Each spring, or bond, restricts one degree of fr
dom. Thus the minimum number of bonds required to co
pletely fix this site isg. Propagation of rigidity on directed
lattices is then defined in the following terms: a site~with g
degrees of freedom! at ‘‘time’’ t is rigidly connected to a
boundary att50 if and only if it hasg or more neighbors a
earlier times who in turn are rigidly connected to the boun
ary. Thus, in contrast toundirectedrigidity, which requires
complex algorithms@27–30# that presently limit the maxi-
mum sizes to approximately 1.63107 sites@21,20#, directed
rigidity percolation ~DRP! can be studied by means of
simple numerical procedure, and on much larger system

It is interesting to notice that, on anydirected lattice, ri-
gidity percolation is equivalent tobootstrap percolation
~BP!, a modified percolation problem in which a site belon
to a cluster if at leastm of its neighbors also do@32–40#.
Bootstrap percolation on undirected lattices attempts to
scribe certain systems in which atoms behave magnetic
only if they are surrounded by a ‘‘large enough’’ number
magnetic neighbors. A second reason for interest in BP is
search for novel critical behaviors in percolation@37,38#, but
the present understanding of this problem indicates that B
either ‘‘trivially first order’’ with pc51 or second order and
in the universality class of scalar percolation@39–41#.

Early studies of semidirectedm52 BP on square lattices
seemed to indicate a transition at a nontrivialp @34,36#, but
rigorous arguments@35# later showed thatpc51 in this case.
To our knowledge there are no published studies of direc
5699 © 1999 The American Physical Society
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bootstrap percolation~DBP! displaying a second-order tran
sition.

It has been recently conjectured@42# that any continuous
transition in a nonequilibrium process with a scalar ord
parameter, and a nonfluctuating, nondegenerate abso
state must be in the same universality class as directed
colation ~DP! @42–51#. According to this, DRP-DBP would
belong to the DP universality class in all dimensions
which it has a continuous transition.

It is thus interesting to study RP on finite-dimension
directed lattices of increasing dimensionality, both to test t
conjecture and to understand in which fashion DRP beco
discontinuous asd→`. In this article we report on our re
sults for directed rigidity percolation~DRP, equivalent to
DBP! on several (111)-dimensional lattices displayin
first- and second-order phase transitions.

If the DRP transition is second order, we pay particu
attention to the determination of critical indices associa
with the spreading of rigidity, as described in the followin
@44,45#. As is usual in the study of directed processes,
defineD(p) to be the asymptotic density of ‘‘active’’~rigid!
sites, which is equivalent to the probabilityP(p) that, at
large timest, a randomly chosen point will be rigidly con
nected to a totally rigid boundary att50. If the dilution
parameterp is lower than a critical valuepc , rigidity does
not propagate andP(p)50. If the transition is second orde
immediately abovepc one hasP(p);(p2pc)

bdens
.

If the evolution starts from afinite rigid cluster or ‘‘seed’’
at t50 instead of a rigid boundary, one definesPa

seed(t,p) as
the probability that the cluster grown from this seed will s
be ‘‘active’’ at time t. If the transition is second orde
Pa

seed(t,p);(p2pc)
bseed

for p→pc
1 and t→`. At pc this

quantity decays as

Pa
seed~ t,pc!;t2d, ~1!

with d5bseed/n i and n i the temporal~or parallel! correla-
tion lengthexponent:j i;up2pcu2n i.

The typical widthw of a cluster grown from a finite see
at pc behaves as

w~ t !;tx, ~2!

wherex5n' /n i andn' is the critical index associated wit
the decay lengthj' of perpendicular or ‘‘space’’ correla
tions: j';up2pcu2n'. Averages are taken only over clu
ters still alive at timet. Finally, the average mass of a clust
grown from a finite seed atpc behaves as

Mseed~ t !;t h̃, ~3!

whereh̃5(n i1n'2bdens)/n i @45#.
For comparison we also simulate numerically usual

rected percolation~DP, which corresponds tog51). In the
DP case a simple argument shows thatbdens5bseedbecause
of time-reversal symmetry: consider for simplicity bond d
lution and choose an arbitrary pointx at time t. Any con-
figuration of occupied bonds connecting (x,t) to the bound-
ary at t50, and thus contributing toP(p,t), when reflected
in the time direction, contributes toPa

seed(t,p) if now a
pointlike seed is located atx. Since both the original and th
r
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time-inverted configuration have the same probabili
P(p,t)5Pa

seed(p,t) exactly for bond-diluted DP, therefor
bdens5bseed. Notice that this equality impliesh̃1d2x
51.

Although no such time-reversal symmetry exists for DR
we find thatbdens5bseedalso in this case. Furthermore, w
find that DRP belongs to the DP universality class, i.e.,
exactly the same critical indices. Thus, there is no sepa
universality class for directed rigidity percolation as there
for undirectedrigidity percolation. This is consistent with
recent conjecture@42# according to which any nonequilib
rium process with a single absorbing state will belong to
same universality class as DP.

We also studied the surface critical behavior@45–
47,50,51# of DRP, by means of simulations in the presen
of an absorbing boundary. In the DP case, the presence o
absorbing wall is known to only modify the survival expo
nentbseed. We find that this is also the case for DRP, and t
new exponent is also consistent with the one obtained for
with a wall.

In Sec. II we present our numerical results for DRP
directed lattices, with and without absorbing walls, and e
mate the relevant critical indices associated with the seco
order transitions. Section III describes DRP on a direc
triangular lattice. This case has a first-order transition ap
51, and can be solved exactly forp→1.

II. NUMERICAL SIMULATIONS

In order to simulate DRP we store a binary variable p
site, indicating whether the given site is or is not rigid
connected to the boundary att50. We use the by now stan
dard techniques of multispin coding~MSC! @52#, which al-
lows us to store 64 binary variables~on a DEC-Alpha pro-
cessor! in an integer word, and also to update all of the
simultaneously. A brief description of the algorithm for th
case of a site-diluted triangular lattice now follows. L
word[t] be an integer word that will contain the states
64 site variables at timet. Assume thatleft , down, and
right code the rigid state of the corresponding left, dow
and right neighbors at earlier times. A bit set to 1 in any
these words means that a site is rigidly connected to
boundary at t50. We first construct an auxiliary word
aux whose bits are set to 1 if the corresponding site has
or more of its neighbors at earlier times set to
aux 5 ( left .AND.right ).OR.(left .AND.down).OR.
(right .AND.down). This example corresponds tog52.
Site dilution is now implemented by masking this word wi
a random integer wordrandom , whose bits are set to 1 with
probabilityp. Therefore the rigid state of 64 sites at timet is
determined asword[t] 5aux .AND.random . Since inter-
actions are short ranged in the time direction, we only ne
to keep in memory a maximum of three consecutive lines
the system and we do this by means of three linear arr
which are reused periodically.

We have considered three different oriented lattic
square, triangular, and five neighbor~5n! lattice ~see later!.
The first two display trivial behavior~i.e., rigid only at p
51) and the third presents a continuous DRP transition
nontrivial pc . In the first place we discuss DRP on a squa
lattice as depicted in Fig. 1~a!. Each site at timet has two
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PRE 60 5701DIRECTED RIGIDITY AND BOOTSTRAP PERCOLATION . . .
neighbors at timet21. This is the minimum number o
neighbors needed for rigidity withg52 and thus any amoun
of dilution is enough to impede propagation of rigidit
Therefore square lattices are not rigid at anyp,1. If p51,
rigidity propagates only if boundary conditions are approp
ate ~e.g., rigid, or periodic, but not open!. Any finite rigid
cluster of sizel shrinks to zero inl time steps, as shown in
Fig. 2~a!. The same would happen on directedd-dimensional
hypercubic lattices ifg5d.

We next consider the triangular lattice, oriented as sho
in Fig. 1~b!. Each site has three neighbors at earlier tim
Despite the number of neighbors being larger than the m
mum required~two!, this lattice is also unable to propaga
rigidity if diluted by any amount. To see why this is s
consider Fig. 2~b!, where one starts from a finite cluster
rigid sites~black sites! at t50. If the lattice is undiluted (p
51), this cluster would just propagate unchanged
‘‘time.’’ If the lattice is diluted by any amount, this rigid
cluster would gradually shrink and eventually disappe
Thus for this lattice,pc51, the same as for the square lattic
In contrast, finite-size effects are expected to be quite str
on the triangular lattice, since the lifetime of a finite rig
cluster diverges asp→1, no matter its original size. Also
boundary effects are different since now propagation of
gidity can exist without periodic boundary conditions. W
discuss this case in detail in Sec. III.

In order to have a nontrivialpc for DRP, we use triangu-

FIG. 1. Lattices used for directed rigidity percolation studies
this work: ~a! square lattice,~b! triangular lattice, and~c! five-
neighbor lattice. All examples are shown here undiluted (p51).
Rigidity propagates upwards in ‘‘time’’ from the rigid boundar
~gray! at t50. A site is defined to be rigidly connected to th
boundary if it has two or more neighbors atearlier times, which in
turn are connected.

FIG. 2. Propagation of rigidity from finite clusters. The startin
configuration is a finite sequence of contiguous rigid sites~black
dots!. ~a! On the square lattice, the size of this rigid cluster shrin
in time. ~b! On the triangular lattice, the rigid cluster’s size remai
constant in time if the lattice is undiluted, but shrinks in time f
any p,1; thuspc51 for this case.~c! On the undiluted 5n lattice,
rigid clusters grow in time. Therefore for this lattice there is
nontrivial valuepc ~depending on the type of dilution, i.e., bond
site! above which rigidity propagates forever.
-
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lar lattices augmented with two further bonds per site. Th
extra bonds connect layerst andt22, as shown in Fig. 1~c!.
This makes a total of five neighbors per site and we call t
the 5n lattice for simplicity. Now consider what happen
when starting from a finite cluster of rigid sites on an un
luted 5n lattice. As shown in Fig. 2~c!, the size of the rigid
clusterexpandsin time with a constant angle ifp51. Thus
there will be a nontrivial valuepc , above which rigidity
propagates forever. We find that the DRP transition is sec
order on this lattice. For comparison we also simulate DP
the square lattice.

We next discuss our numerical results for DRP on then
lattice, and compare them to DP on the square lattice.
typically start our simulations from a finite seed of contig
ous rigid sites and let the system evolve for 105 time steps
~or until all activity dies out! and measure the survival prob
ability Pa

seed, cluster widthw, and average massMseedas a
function of time.

In a first set of simulations we estimate the critical dens
pc for DRP on site-diluted 5n lattices, by measuringPa

seed(t)
at different values ofp and identifying the one for which the
asymptotic behavior is closest to a straight line in a log-
plot ~Fig. 3!. From these data we estimatepc

DRP50.705 05
60.000 05. In contrast toPa

seed, which shows appreciable
curvature for off-critical values ofp, the slopes of the cluste
massMseedand the meandering widthw(t) in a similar log-
log graph show little variation whenpÞpc . For DP on site-
diluted square lattices, we use the estimate@49# pc
50.644 70.

Figure 4~a! showsPseed(t) for DRP (5n lattice! and DP
~square lattice! at their respective critical values. Assumin
power-law corrections to Eq.~1!, we fit Pseed(pc ,t)
5at2d(11bt2v) and find dDRP50.1560.01 and dDP

50.1660.02.
The cluster massM (t) and the meandering widthw(t)

behave as shown in Figs. 4~b! and 4~c!, respectively. From
these data we estimateh̃DRP51.4760.01, h̃DP51.47
60.01, xDRP50.63360.005, and xDP50.63160.005.
These estimates are consistent with the more precise va
@45,49# dDP50.1594,h̃DP51.4732, andxDP50.6327, sug-
gesting that DRP and DP are in the same universality cl

In order to further test whether DRP has the same crit
behavior as DP, we also studied DRP in the presence o

s

FIG. 3. Survival probability for DRP clusters grown from finit
seeds on site-diluted 5n lattices with ~from bottom to top! p
50.704 00, 0.704 80, 0.704 90, 0.705 00, 0.705 05 ~dashed!;
0.705 10, 0.705 20, 0.705 50, 0.706 00, and 0.707 00. Avera
were taken over 105 realizations on systems of width 3840 sites.
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absorbing wall~DRPW!. For DP with an absorbing wal
~DPW! it is known @45–47,50,51# that the survival exponen
bseed is replaced byb1

seed, while n i and n' remain un-
changed. Therefore onlyd is expected to change due to th
presence of the absorbing wall. Our results are displaye
Fig. 5, and from them we obtaindDRPW50.42360.003,
h̃DRPW51.4860.01, andxDRPW50.6260.02. Notice that
dDRPW, h̃DRPW, and2xDRPW no longer add up to 1, sinc
bdensandb1

seedare independent exponents. These results
entirely consistent with the values obtained for DPW
other authors@45,46#.

III. DRP ON THE TRIANGULAR LATTICE

This case is marginal as already advanced, since
amount of dilution will destroy rigidity and thuspc51, but
on the other hand the lifetime of finite clusters is not finite
on the square lattice, but diverges asp→1. As we show now,
it is possible to obtain finite-size effects analytically forq
5(12p)!1.

FIG. 4. Critical behavior obtained from finite seeds at t
second-order transition for DRP on site-diluted 5n lattices and for
DP on site-diluted square lattices.~a! Survival probability;~b! clus-
ter mass;~c! meandering width.
in

re

ny

s

Assume one starts from a completely rigid boundary at
50, on a triangular lattice of infinite width@Fig. 6~a!#. Let
q5(12p)!1 be the dilution parameter. We do not need
specify for the moment whether we are dealing with bond

FIG. 5. Same as Fig. 4, but now finite clusters start near
absorbing wall atx50. ~a! Survival probability;~b! cluster mass;
~c! meandering width.

FIG. 6. The directed triangular lattice presents a first-order tr
sition at p51, which can be described in simple terms. Arrow
indicate absent sites, assuming site dilution. Whenp,1 ~a! defects
~pairs of adjacent nonrigid sites! nucleate at rater(p) per unit
length, giving rise to nonrigid regions that~b! widen in time with
velocity v(p).



t
e

ite
gi

h
o

u

be
d

e

al
id

id
e

ity
al
Th
y-
-

RP
an

ts
A
y
t;
e’
t
ts

-

on
ts

-
r

tes

her
sing

ting

ex-

r

y

te-

PRE 60 5703DIRECTED RIGIDITY AND BOOTSTRAP PERCOLATION . . .
site dilution. For short times all sites are rigidly connected
the lower boundary, but soon some nonrigid sites, or ‘‘d
fects,’’ will appear in the presence of either bond or s
dilution. The smallest possible defect is a single nonri
site, which happens with probabilityq per site on site-diluted
lattices ~one missing site! and with probability 3q2p1q3

'3q2 per site on bond-diluted lattices~two or three missing
bonds!. This single defect ‘‘heals’’ immediately since eac
site above this one has three predecessors, but needs
two rigid ones in order for itself to be rigid.

A nonhealing defect~in the following simply a defect! is
created if two sites connected by a diagonal bond are sim
taneously nonrigid, as in Fig. 6~a!. All sites directly above
these will have only one rigid neighbor and thus fail to
rigid, creating a ‘‘defect wall.’’ Assume that these paire
defects are nucleated with densityr(p) per unit length~we
calculater later!, and consider now the time evolution of th
resulting defect wall.

In the absence of dilution (q50), the boundaries of a
nonrigid region stay unchanged in time@Fig. 6~a!#. Rigid
sites directly on this boundary have only two bonds~the
minimum required number sinceg52) to rigid sites at ear-
lier times. If one of these boundary sites fails to be rigid,
sites above it will also not be rigid. In this case the rig
boundary is displaced by one unit, as shown in Fig. 6~b!.
Therefore, for small but nonzeroq, the rigid wall in Fig. 6~b!
moves rightwards with an average velocityv5]x/]t, which
equals the probability for a boundary site to fail to be rig

Neglecting fluctuations, we have a picture in which d
fects appear at a rater(p) per unit length, giving rise to
nonrigid regions that widen in time with constant veloc
v(p). The system will become completely nonrigid when
defect regions have coalesced, as depicted in Fig. 7.
picture of the rigid-nonrigid transition is related to the pol
nuclear growth model@53#, which has been extensively stud
ied in the area of crystal growth. For our discussion of D
we only need a few results, which can be derived by me
of simple arguments.

Assuming one knows the cone anglev(p) and the defect
densityr(p), it is easy to calculate the density of rigid poin
P(p,t) after t time steps on a system of infinite width.
point (x,t) will be rigidly connected to the rigid boundar
located att50 if it has not suffered the effect of any defec
in other words, if no defect has nucleated inside a ‘‘con
with downwards opening anglev and whose vertex sits a
(x,t). Let V5vt2 be the area of this cone. Since defec
nucleate randomly in space-time with densityr(p), their
number inside any given areaV is a Poisson-distributed ran

FIG. 7. Defects~empty circles! nucleate at rater(p) per unit
length, and the resulting ‘‘defect walls’’ widen in time with velocit
v(p), eventually covering the entire system in a time of ordert* .
o
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dom variable with averageVr. Thus

P~p,t !5e2(t/t* )2
, ~4!

where

t* 5~vr!21/2 ~5!

is a characteristic time for the disappearance of rigidity,
an infinitely wide system. Using similarly simple argumen
it is easy to see that the mean lifetime of afinite rigid cluster
diverges asv21 asp→1 ~see Fig. 8!.

We now calculatev(p) and r(p), and compare the re
sulting prediction fort* with our numerical results. Unde
site dilution, the probability per unit time for a rigid wall to
be displaced by one unit is simplyvsite5q. If bonds are
diluted instead, one getsvbond512p2'2q. In order to cal-
culate r, we notice that a pair of contiguous absent si
appears with probabilityrsite52q2 per site and per unit time
on site-diluted lattices. On bond-diluted lattices, on the ot
hand, creating such a pair requires at least three mis
bonds. Thusrbond;q3. Finally one has@Eq. ~5!# tsite*
;q23/2 and tbond* ;q22. Figure 8 showst* as measured on
site-diluted lattices. These values are obtained by integra
in time the density of rigid sitesP(p,t). For an intermediate
range ofq, it is found thatt* ;q23/2, as predicted for infi-
nitely wide systems.

On a system of a finite widthw with periodic boundary
conditions, a crossover to a width-dominated behavior is
pected ifw!t* v; equivalently ifw!(v/r)1/2, whereupon

P~p,t ! f inite5e2t/t f inite* ~6!

and

t f inite* 5~wr!21. ~7!

This regime corresponds to the defect-free areaV becoming
essentially a rectangle of heightt and widthw instead of a
triangle of heightt and basevt. According to Eq.~7!, one
should expectt* ;q22 for small q.

This regime is observed forw5128, but is less clear for
larger values ofw. Observation of this crossover for wide

FIG. 8. Mean time for the disappearance of rigidity, on si
diluted triangular lattices of widthw5128 ~circles!, 256 ~squares!,
and 512~diamonds!, as a function ofq512p.
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systems is numerically difficult, since it requires one
simulate very smallq values, which makes the mean rig
times too large.

IV. CONCLUSIONS

We considered directed rigidity percolation~DRP! with
two degrees of freedom per site on three differe
(111)-dimensional lattices. This problem is equivalent
directed bootstrap percolation~DBP! with m52. On the
square lattice, the system is only rigid at long times ifp
51. On triangular lattices a similar situation happens,
this case has a nontrivial behavior forp→1, which we cal-
culate analytically and confirm by numerical simulation. T
mean lifetime of rigidity on infinitely wide systems is foun
to diverge whenp→1 as (12p)23/2 for site dilution, and as
(12p)22 for bond dilution. The mean lifetime of a finite
rigid cluster diverges on the other hand as (12p)21 in both
cases.

By augmenting the triangular lattice with two furthe
bonds we define the 5n lattice, which has a continuous tran
sition at pc

DRP50.705 0560.000 05 for site dilution. We
measure the critical indices associated with the spreadin
rigidity and find that the DRP transition belongs to the
rected percolation~DP! universality class, as a recent conje
ture would indicate. A similar numerical study of DRP wi
r-

tt.

tt

. E

e

t

t

of

an absorbing wall gives exponents equally consistent w
those of DP. Thus, while~undirected! rigidity percolation
does not belong to the same universality class as usual
colation, the introduction of directedness makes these
problems essentially equivalent at their respective criti
point, i.e., on large scales.

On (d11)-directed lattices, DP is always second ord
~with mean-field exponents above its upper critical dime
sion dc55). On the other hand, Bethe lattice calculatio
indicate that the DRP transition is first order for larged. The
only difference between these two problems is the numbeg
of degrees of freedom per site. While DP corresponds tg
51 ~and has a continuous transition in all dimensions!, DRP
corresponds to anyg.1 and has a discontinuous transitio
on the Bethe lattice~infinite dimensionality!. Therefore it is
clear that DRP and DP, which as shown here have the s
critical behavior ind51, will cease to be equivalent whe
the space dimensionalityd is increased. We are present
extending this study to larger values ofd.
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