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Directed rigidity and bootstrap percolation in 1 +1 dimensions
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We study directed rigidity percolatiofequivalent to directed bootstrap percolajian three different
lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at
p=1, while the augmented triangular lattice shows a continuous transition at a nonprjvi&@n the aug-
mented triangular lattice we find, by extensive numerical simulation, that the the directed rigidity percolation
transition belongs to the same universality class as the directed percolation. The same conclusion is reached by
studying its surface critical behavior, i.e., the spreading of rigidity from finite clusters close to a nonrigid wall.
Near the discontinuous transition pt=1 on the triangular lattice, we are able to calculate the finite-size
behavior of the density of rigid sites analytically. Our results are confirmed by numerical simulation.
[S1063-651%99)19210-9

PACS numbgs): 05.70.Jk, 05.70.Ln, 64.60.Ak

[. INTRODUCTION —0o0? This analysis is further complicated by the fact that the
character of the transition imttice dependent. Hypercubic
Central-force rigidity percolatiotRP) [1-21] is the me- lattices in which sites have degrees of freedom each cannot
chanical equivalent of the usual percolation problg22—  be rigid if they are diluted, but are rigid if undiluted and if
26]. In RP forces(vectorg must be transmitted instead of they have appropriate boundary conditions. Thus on hyper-
scalars. This problem has received increased attention reubic lattices the RP transition is “trivially first order” at
cently, following the development of mean-field theoriesp.=1, in any dimension.
[12,16,18 as well as of powerful combinatorial algorithms  Similar considerations apply to directed lattices. Bethe
[27-3(Q for its numerical study13—-17,19-21 As a result lattices are directed by construction, since there is only one
of these efforts, a deeper understanding of the rigidity tranpath between any two given sites. On directed lattices, rigid
sition has emerged, although some open questions remainconnectivity takes a particularly simple form. Imagine a rigid
Bethe lattice calculations for RPL6,18 with an adjust- boundary to which a site witg degrees of freedom must be
able numbeg of degrees of freedom at each site have beemigidly attached by means of rotatable springsentral
used to obtain the behavior of the spanning cluster densitforces. Each spring, or bond, restricts one degree of free-
P..(p) as a function of, the dilution(bond or sit¢ param- dom. Thus the minimum number of bonds required to com-
eter. Forg=1 one has usudkcalaj percolation, displaying pletely fix this site isg. Propagation of rigidity on directed
a continuous transition witlBM"=1. But for anyg>1, the lattices is then defined in the following terms: a gitéth g
order parameteP., has a discontinuity at a finite critical degrees of freedomat “time” t is rigidly connected to a
valuep.. Thus the rigidity transition is discontinuous fdr  boundary at=0 if and only if it hasg or more neighbors at
—o [18,19. Other MF approximations also predict a first- earlier times who in turn are rigidly connected to the bound-
order RP transitiof12]. ary. Thus, in contrast tandirectedrigidity, which requires
On triangular lattices, on the other hand, there is a divercomplex algorithmq27-3Q that presently limit the maxi-
gent correlation length and the RP transitiorsézond order mum sizes to approximately x6L0° sites[21,20, directed
[13-17,20,2], but in a different universality class than usual rigidity percolation (DRP) can be studied by means of a
percolation[20,21]. Some of the numerical evidence in two simple numerical procedure, and on much larger systems.
dimensions(2D) is consistent with a small discontinuity in It is interesting to notice that, on ardirectedlattice, ri-
the order paramete®.,, or a very small value fop, but the  gidity percolation is equivalent tdootstrap percolation
precise interpretation of this evidence is still a matter of de{BP), a modified percolation problem in which a site belongs
bate[17]. In three dimensions, numerical simulations showto a cluster if at leasin of its neighbors also d§32-4Q.
[31] that the rigidity transition is second order, with a value Bootstrap percolation on undirected lattices attempts to de-
of B clearly larger than zero. This is somewhat surprisingscribe certain systems in which atoms behave magnetically
since the rigidity transition is first orde3E0) in the limit  only if they are surrounded by a “large enough” number of
of infinite dimensionality16,18]. It is thus at present unclear magnetic neighbors. A second reason for interest in BP is the
in which fashion the RP transition becomes discontinuous asearch for novel critical behaviors in percolati@Y,3§, but
the dimensionality increases. Is there something like an upthe present understanding of this problem indicates that BP is
per critical dimension for RP, beyond which it is first order? either “trivially first order” with p.=1 or second order and
Or does it get increasingly “first order’(i.e., 3—0) asd in the universality class of scalar percolati89—-41.
Early studies of semidirectett=2 BP on square lattices
seemed to indicate a transition at a nontriypal34,36, but
*Electronic address: marcio@if.uff.br rigorous argument35] later showed thap.= 1 in this case.
"Electronic address: cristian@if.uff.br To our knowledge there are no published studies of directed
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bootstrap percolatiofDBP) displaying a second-order tran- time-inverted configuration have the same probability,
sition. P(p,t)=P5*®{p,t) exactly for bond-diluted DP, therefore

It has been recently conjecturg42] that any continuous pgdens= gseed Npotice that this equality implie§+ 6— x
transition in a nonequilibrium process with a scalar order=1.
parameter, and a nonfluctuating, nondegenerate absorbing Although no such time-reversal symmetry exists for DRP,
state must be in the same universality class as directed peyie find thatﬁdens: ,Bsee"also in this case. Furthermore, we
colation (DP) [42-51. According to this, DRP-DBP would find that DRP belongs to the DP universality class, i.e., has
belong to the DP universality class in all dimensions forexactly the same critical indices. Thus, there is no separate
which it has a continuous transition. universality class for directed rigidity percolation as there is

It is thus interesting to study RP on finite-dimensionalfor undirectedrigidity percolation. This is consistent with a
directed lattices of increasing dimensionality, both to test thigsecent conjectur¢42] according to which any nonequilib-
conjecture and to understand in which fashion DRP becomesum process with a single absorbing state will belong to the
discontinuous asl—c. In this article we report on our re- same universality class as DP.

sults for directed rigidity percolatiotDRP, equivalent to We also studied the surface critical behavip45—
DBP) on several (% 1)-dimensional lattices displaying 47,50,5] of DRP, by means of simulations in the presence
first- and second-order phase transitions. of an absorbing boundary. In the DP case, the presence of the

If the DRP transition is second order, we pay particularabsorbing wall is known to only modify the survival expo-
attention to the determination of critical indices associatethent3¢¢? We find that this is also the case for DRP, and the
with the spreading of rigidity, as described in the following new exponent is also consistent with the one obtained for DP
[44,45. As is usual in the study of directed processes, weayith a wall.
defineD(p) to be the asymptotic density of “active(tigid) In Sec. Il we present our numerical results for DRP on
sites, which is equivalent to the probabili(p) that, at directed lattices, with and without absorbing walls, and esti-
large timest, a randomly chosen point will be rigidly con- mate the relevant critical indices associated with the second-
nected to a totally rigid boundary a@t=0. If the dilution  order transitions. Section Il describes DRP on a directed
parameterp is lower than a critical valug@,, rigidity does triangular lattice. This case has a first-order transitiop at
not propagate ané(p)=0. If the transition is second order, =1, and can be solved exactly fpr— 1.

immediately abovep. one hasP(p)~(p—pC)BdenS.

If the evolution starts from &nite rigid cluster or “seed” Il. NUMERICAL SIMULATIONS
att=0 instead of a rigid boundary, one defire¥®{t,p) as _ _ _
the probability that the cluster grown from this seed will still  In order to simulate DRP we store a binary variable per

be “active” at time t.dlf the transition is second order, Site, indicating whether the given site is or is not rigidly
see e (h_ )8 + o ; connected to the boundary &t 0. We use the by now stan-
gljancgitt;/p()jec(gys I?,;S) for ppc andt—x. At p, this dard techniques of multispin codin@SC) [52], which al-
lows us to store 64 binary variablésn a DEC-Alpha pro-
P5*eqt,pe)~t 7, (1)  cessorin an integer word, and also to update all of them
simultaneously. A brief description of the algorithm for the
with 8= /3596%” and v, the temporalior paralle) correla- case of a site-diluted triangular lattice now follows. Let

tion lengthexponent:&,~|p—p¢ . word[t]  be an integer word that will contain the states of
The typical widthw of a cluster grown from a finite seed 64 site variables at timé. Assume thateft , down, and
at p. behaves as right code the rigid state of the corresponding left, down,
and right neighbors at earlier times. A bit set to 1 in any of
w(t)~tX, (2) these words means that a site is rigidly connected to the

boundary att=0. We first construct an auxiliary word
wherex=v, /v, andv, is the critical index associated with aux whose bits are set to 1 if the corresponding site has two
the decay length¢, of perpendicular or “space” correla- or more of its neighbors at earlier times set to 1:
tions: & ~|p—p¢| ~*+. Averages are taken only over clus- aux = (left .AND.right ).OR.(eft .AND.down).OR.
ters still alive at time. Finally, the average mass of a cluster (right .AND.down). This example corresponds tp=2.

grown from a finite seed gi. behaves as Site dilution is now implemented by masking this word with
B a random integer worchndom , whose bits are set to 1 with
Mgeeedt)~17, (3)  probabilityp. Therefore the rigid state of 64 sites at timis
determined asvord[t] =aux.AND.random . Since inter-
where= (v + v, — B**")/ v, [45]. actions are short ranged in the time direction, we only need

For comparison we also simulate numerically usual di-to keep in memory a maximum of three consecutive lines of
rected percolatiofDP, which corresponds tg=1). In the  the system and we do this by means of three linear arrays,
DP case a simple argument shows t84%"= g¢¢because which are reused periodically.
of time-reversal symmetry: consider for simplicity bond di- We have considered three different oriented lattices:
lution and choose an arbitrary poirtat timet. Any con-  square, triangular, and five neighb@m) lattice (see latex.
figuration of occupied bonds connecting ) to the bound-  The first two display trivial behaviofi.e., rigid only atp
ary att=0, and thus contributing t&(p,t), when reflected =1) and the third presents a continuous DRP transition at a
in the time direction, contributes t®5°¢{t,p) if now a  nontrivial pc. In the first place we discuss DRP on a square
pointlike seed is located at Since both the original and the lattice as depicted in Fig.(d). Each site at timé has two
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FIG. 1. Lattices used for directed rigidity percolation studies in 4
this work: (a) square lattice(b) triangular lattice, andc) five- 10 10 100 1000 10000 100000
neighbor lattice. All examples are shown here undilutpe-(). t

Rigidity propagates upwards in “time” from the rigid boundary _ N -
(gray) att=0. A site is defined to be r|g|d|y connected to this FIG. 3. Survival probablllty for DRP clusters grown from finite

boundary if it has two or more neighborserlier times, which in ~ Seeds on site-diluted rb lattices with (from bottom to top p
turn are connected. =0.704 00, 0.704 80, 0.704 90, 0.70500, 0.705 05 (dasheat

0.70510, 0.70520, 0.70550, 0.706 00, and 0.707 00. Averages

neighbors at timet—1. This is the minimum number of were taken over TOrealizations on systems of width 3840 sites.

neighbors needed for rigidity with=2 and thus any amount |5y |attices augmented with two further bonds per site. These
of dilution is enough to impede propagation of rigidity. extra bonds connect layersaindt— 2, as shown in Fig. ().
Therefore square lattices are not rigid at gny 1. If p=1,  This makes a total of five neighbors per site and we call this
rigidity propagates only if boundary conditions are appropri-the 5y |attice for simplicity. Now consider what happens
ate (€.9., rigid, or periodic, but not opgnAny finite rigid  \yhen starting from a finite cluster of rigid sites on an undi-
cl-uster of sizd shrinks to zero ifl time steps, as shqwn N juted 5n lattice. As shown in Fig. @), the size of the rigid
Fig. 2@). The same would happen on directedimensional  ¢|ysterexpandsin time with a constant angle {i=1. Thus
hypercubic lattices ig=d. _ _ there will be a nontrivial valug,, above which rigidity
We next consider the triangular lattice, oriented as showpy gpagates forever. We find that the DRP transition is second

in Fig. 1(b). Each site has three neighbors at earlier timesqger on this lattice. For comparison we also simulate DP on
Despite the number of neighbors being larger than the minie square lattice.

mum requiredtwo), this lattice is also unable to propagate e next discuss our numerical results for DRP on the 5
rigidity if diluted by any amount. To see why this is SO, |attice, and compare them to DP on the square lattice. We
consider Fig. t), where one starts from a finite cluster of typically start our simulations from a finite seed of contigu-
rigid S|te§(black site$ att=0_. If the lattice is undiluted f§ _ous rigid sites and let the system evolve fof tine steps
=1), this cluster would just propagate unchanged inor until all activity dies outand measure the survival prob-
time.” If the lattice is d|Iute_d by any amount, th|_s rigid ability Pgeed, cluster widthw, and average masd ,,.4as a
cluster would gradually shrink and eventually disappears,ction of time.

;I'hus for thls}_lqttlce_pf %f the same as for(tjhe st;quare_ lattice. |y 5 first set of simulations we estimate the critical density
n contrast, finite-size effects are expected to be quite strong - pRp on site-diluted B lattices, by measuring*{t)

on the triangular lattice, since the lifetime of a finite rigid at different values op and identifying the one for which the

cluster diverges ap—>1_, no matter its original SIze. Also . asymptotic behavior is closest to a straight line in a log-log
boundary effects are different since now propagation of ri-

. ; RP_
gidity can exist without periodic boundary conditions. We plot (Fig. 3). From these d?;?,, we gsumep& _0'705. 05
discuss this case in detail in Sec. Il +0.00005. In contrast t&;"°", which shows appreciable

In order to have a nontriviah, for DRP, we use triangu- curvature for off-critical values gb, the slopes of the cluster

massMe.eqand the meandering width(t) in a similar log-
log graph show little variation whep+ p.. For DP on site-
diluted square lattices, we use the estimd#9] p.
=0.64470.

Figure 4a) showsPg..{t) for DRP (5n lattice) and DP
(square latticeat their respective critical values. Assuming
power-law corrections to Eq(1), we fit PgeedPc,t)
=at %(1+bt™®) and find 6°RP=0.15+0.01 and &°°
=0.16+0.02.

The cluster mas$1(t) and the meandering widtv(t)

FIG. 2. Propagation of rigidity from finite clusters. The starting A .
configuration is a finite sequence of contiguous rigid sitaack behave as shown in Figs(B} and 4c), respectively. From

dots. (a) On the square lattice, the size of this rigid cluster shrinkstn€Se datglRpwe estimat@”~ "= 1-47iD(-2;017 7°F =147

in time. (b) On the triangular lattice, the rigid cluster's size remains = 0.01, x~""=0.633+0.005, and x~"=0.631*+0.005.
constant in time if the lattice is undiluted, but shrinks in time for These estimates are consistent with the more precise values
anyp<1; thusp,=1 for this case(c) On the undiluted & lattice,  [45,49 6°F=0.1594,7°"=1.4732, and(°"=0.6327, sug-

rigid clusters grow in time. Therefore for this lattice there is a gesting that DRP and DP are in the same universality class.
nontrivial valuep, (depending on the type of dilution, i.e., bond or  In order to further test whether DRP has the same critical
site) above which rigidity propagates forever. behavior as DP, we also studied DRP in the presence of an
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-1 =1

by 10 P 1°
—— DRP
10 | —— DP 107
a 10 100 1000 10000 100000 a 10 100 1000 10000 100000
time time
10° 10°
—— DRP / —— DRPW

10° 10° L
b 10 100 1000 10000 100000 b 1 100 1000 10000 100000
time time
10° 10°
——DRP —— DRPW -
10°
WM 10 W(t)
10° [
107 10™ -
c 10 100 1000 10000 100000 c 10 100 1000 10000 100000
time time

FIG. 5. Same as Fig. 4, but now finite clusters start near an
absorbing wall ax=0. (a) Survival probability;(b) cluster mass;
(c) meandering width.

FIG. 4. Critical behavior obtained from finite seeds at the
second-order transition for DRP on site-diluted Ettices and for
DP on site-diluted square lattices) Survival probability;(b) clus-
ter massjc) meandering width.

Assume one starts from a completely rigid boundary at
absorbing wall(DRPW). For DP with an absorbing wall =0, on a triangular lattice of infinite widtfFig. 6(a)]. Let
(DPW) it is known[45-47,50,5] that the survival exponent g=(1—p)<1 be the dilution parameter. We do not need to
B%¢¢dis replaced byB$®®¢, while v, and v, remain un- specify for the moment whether we are dealing with bond or

changed. Therefore only is expected to change due to the
presence of the absorbing wall. Our results are displayed in i
i Bk

Fig. 5, and from them we obtais®RPW=0.423+0.003,
7PRPW=1 48+ 0.01, andxPR"W=0.62+0.02. Notice that "0
“A
A
A INUANL AT

SPRPW 5 DRPW PRPW no longer add up to 1, since
S
a b

7 , and—y
BYe"sand B5°%are independent exponents. These results are
entirely consistent with the values obtained for DPW by
other author$45,46].

This case is marginal as already advanced, since any gig g, The directed triangular lattice presents a first-order tran-
amount of dilution will destroy rigidity and thus.=1, but  sjtion at p=1, which can be described in simple terms. Arrows
on the other hand the lifetime of finite clusters is not finite aSindicate absent sites, assuming site dilution. Wpe;h’]_ (a) defects
on the square lattice, but divergespas 1. As we show now,  (pairs of adjacent nonrigid siteswucleate at ratep(p) per unit
it is possible to obtain finite-size effects analytically f@r length, giving rise to nonrigid regions thét) widen in time with
=(1-p)<1l. velocity v(p).

RO
5

AR
i i
o
-

N

IIl. DRP ON THE TRIANGULAR LATTICE
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NON RIGID
10°
¥ t
10°
"o,
FIG. 7. Defects(empty circle$ nucleate at ratg(p) per unit 10" , o
length, and the resulting “defect walls” widen in time with velocity 10° 102 10"
v(p), eventually covering the entire system in a time of ortfer q=(1-p)

site dilution. For short times all sites are rigidly connected to £ g Mean time for the disappearance of rigidity, on site-
the lower boundary, but soon some nonrigid sites, or “de-gjyted triangular lattices of widtv= 128 (circles, 256 (squarej
fects,” will appear in the presence of either bond or siteang 512(diamonds, as a function ofj=1—p.
dilution. The smallest possible defect is a single nonrigid
Site, which happens with probabi”typer site on site-diluted dom variable with averagep' Thus
lattices (one missing site and with probability 3°p+q®
~30? per site on bond-diluted latticésvo or three missing P(p t)=e‘(‘“*)2 (4)
bonds. This single defect “heals” immediately since each ’ ’
site above this one has three predecessors, but needs oflya e
two rigid ones in order for itself to be rigid.

A nonhealing defectin the following simply a defegtis
created if two sites connected by a diagonal bond are simul-

taneously nonrigid, as in Fig.(&. All sites directly above s 5 characteristic time for the disappearance of rigidity, on
these will have only one rigid neighbor and thus fail to be 5 jnfinjtely wide system. Using similarly simple arguments

rigid, creating a “defect wall.” Assume that these paired j; is gasy to see that the mean lifetime dirite rigid cluster
defects are nucleated with densjiyp) per unit length(we diverges aw ! asp—1 (see Fig. 8

calculatep laten, and consider now the time evolution of the  \ye now calculates(p) and p(p), and compare the re-

resulting defect wall. -~ _ sulting prediction fort* with our numerical results. Under
In the absence of dilutiong=0), the boundaries of a ijte dilution, the probability per unit time for a rigid wall to
nonrigid region stay unchanged in tinj€ig. 6@]. Rigid g displaced by one unit is simplys;,=q. If bonds are
sit_eg directly on this bound_ary have on]y_ tw_o bondse diluted instead, one getg,,q=1— p2~2q. In order to cal-
minimum required number sinag=2) to rigid sites at €ar- ¢ ate , we notice that a pair of contiguous absent sites
lier times. If one of these boundary sites fails to be rigid, a"appears with probability.;..= 22 per site and per unit time

sites above it will also not be rigid. In this case the rigid 4 sjte_diluted lattices. On bond-diluted lattices, on the other

boundary is displaced by one unit, as shown in Fi®)6 anq creating such a pair requires at least three missing
Therefore, for small but nonzerp the rigid wall in Fig. &b) bonds. Thuspyong~q°. Finally one has[Eq. (5)] t%.

moves rightwards with an average veloocity: dx/dt, which Nq_3/2 andt’gond~q‘2. Figure 8 shows* as measured on

equals the probability for a boundary site to fail to be rigid. site-diluted lattices. These values are obtained by integrating

fe Clt\lseglecggg ;LU(;L;:‘;:(HS), vveer :i}{[eljnp;ﬁtur?\/;r? Wr?slzhtge_in time the density of rigid siteP(p,t). For an intermediate
P P) P gih, giving range ofq, it is found thatt* ~q~ %2, as predicted for infi-

nonrigid regions that widen in time with constant velocity nitely wide systems

v(p). The system will become completely nonrigid when all - . . .
defect regions have coalesced, as depicted in Fig. 7. This On a system of a finite widt with periodic boundary

picture of the rigid-nonrigid transition is related to the poly- condmo_ns, a crqssov_er toa W'.dth'domm?tzed behavior is ex-
nuclear growth moddb3], which has been extensively stud- pected ifw<<t*v; equivalently ifw<<(v/p)**%, whereupon
ied in the area of crystal growth. For our discussion of DRP .
we only need a few results, which can be derived by means P(p.t) finite=e"tfinite (6)
of simple arguments.

Assuming one knows the cone angigp) and the defect and
densityp(p), it is easy to calculate the density of rigid points
P(p,t) aftert time steps on a system of infinite width. A tFinite=(Wp) . (7)
point (x,t) will be rigidly connected to the rigid boundary
located at =0 if it has not suffered the effect of any defect; This regime corresponds to the defect-free dielaecoming
in other words, if no defect has nucleated inside a “cone”essentially a rectangle of heightand widthw instead of a
with downwards opening angke and whose vertex sits at triangle of heightt and basevt. According to Eq.(7), one
(x,1). Let Q=vt? be the area of this cone. Since defectsshould expect* ~q~ 2 for smallg.
nucleate randomly in space-time with densjyp), their This regime is observed faw=128, but is less clear for
number inside any given aréais a Poisson-distributed ran- larger values ofv. Observation of this crossover for wider

t*=(vp) 2 (5
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systems is numerically difficult, since it requires one toan absorbing wall gives exponents equally consistent with
simulate very smallj values, which makes the mean rigid those of DP. Thus, whiléundirected rigidity percolation

times too large.

IV. CONCLUSIONS

We considered directed rigidity percolatigpRP) with

does not belong to the same universality class as usual per-
colation, the introduction of directedness makes these two
problems essentially equivalent at their respective critical
point, i.e., on large scales.

On (d+1)-directed lattices, DP is always second order

two degrees of freedom per site on three differentyjth mean-field exponents above its upper critical dimen-
(1+1)-dimensional lattices. This problem is equivalent t0gjon d.=5). On the other hand, Bethe lattice calculations

directed bootstrap percolatioDBP) with m=2. On the
square lattice, the system is only rigid at long timegif

indicate that the DRP transition is first order for layeThe
only difference between these two problems is the nurgber

this case has a nontrivial behavior fpor-1, which we cal-

=1 (and has a continuous transition in all dimensjoixRP

culate analytically and confirm by numerical simulation. Thecorresponds to ang>1 and has a discontinuous transition

mean lifetime of rigidity on infinitely wide systems is found
to diverge wherp—1 as (1—p) %2 for site dilution, and as
(1—p) 2 for bond dilution. The mean lifetime of a finite
rigid cluster diverges on the other hand as-(d) ~* in both
cases.

By augmenting the triangular lattice with two further
bonds we define therblattice, which has a continuous tran-
sition at poRP=0.70505-0.00005 for site dilution. We

on the Bethe latticéinfinite dimensionality. Therefore it is
clear that DRP and DP, which as shown here have the same
critical behavior ind=1, will cease to be equivalent when

the space dimensionality is increased. We are presently

extending this study to larger values af
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